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Abstract—Most deep neural networks (DNNs) consist funda-
mentally of convolutional and/or fully connected layers, wherein
the linear transform can be cast as the product between a
filter matrix and a data matrix obtained by arranging feature
tensors into columns. The lately proposed deformable butterfly
(DeBut) decomposes the filter matrix into generalized, butterfly-
like factors, thus achieving network compression orthogonal to
the traditional ways of pruning or low-rank decomposition. This
work reveals an intimate link between DeBut and a systematic hi-
erarchy of depthwise and pointwise convolutions, which explains
the empirically good performance of DeBut layers. By developing
an automated DeBut chain generator, we show for the first time
the viability of homogenizing a DNN into all DeBut layers, thus
achieving an extreme sparsity and compression. Various examples
and hardware benchmarks verify the advantages of All-DeBut
networks. In particular, we show it is possible to compress a
PointNet to < 5% parameters with < 5% accuracy drop, a record
not achievable by other compression schemes.

Index Terms—Model compression, structured sparse matrix,
convolutional neural network (CNN)

I. INTRODUCTION

The shifting of AI from cloud to edge or terminal devices
with limited computing and storage resources has become
another wave of this century and a vital research area. The
workhorse operation in DNNs is linear transform, which
features various economic variants, e.g., Fourier transform [1],
low-rank [2], [3], [4] and sparse matrices [5], [6], [7]. In
order to obtain compact DNNs with fewer parameters for
edge AI implementation, various specialized structured linear
transforms are developed to substitute the fully-connected
(FC) and/or convolution (CONV) layers. Under the scope of
structured sparse linear transforms, Fastfood Transform [8] is
a representative one that belongs to the category of kernel
methods. It approximates a dense Gaussian random matrix
by computing the product between Hadamard and diagonal
Gaussian matrices, thus reducing the number of parameters
in representing the FC layers. However, its diagonal Gaussian
matrices are not learnable so that Adaptive Fastfood [9] is
proposed which updates the elements of the diagonal Gaussian
matrices through training. Lately, a special kind of block-
diagonal matrices with a recursive structure called Butterfly is
proposed [10]. An extension named Kaleidoscope matrix [11]
then follows, which multiplies the original Butterfly series with
its transposed correspondent when approximating the weights
matrix of an FC layer.

Nonetheless, the above schemes are only applied to replace
the FC layer using a square weight matrix whose size is

* Equal contributions

Fig. 1. In this work, we obtain the homogeneous Deformable Butterfly
(DeBut) network, whose layers are all replaced by a series of highly structured
sparse matrices designed automatically. It is worth noting that we further
decipher the relations between DeBut and the widely utilized depthwise
separable convolution.

constrained to be powers-of-two (PoT). Otherwise, the weight
matrix will be padded by zeros, and the redundant part of the
output is discarded, leading to a waste of compute and storage.
To overcome these, [12] generalizes the standard Butterfly and
defines a new type of structured matrices called Deformable
Butterfly (DeBut) (cf. Definition 2) with flexible shapes.
Furthermore, under the im2col settings (cf. Definition 1),
both FC and CONV layers can be replaced by the DeBut
chains (cf. Definitions 3&4) without the PoT limitation.

On the other hand, the origin of CNNs can be dated back
to the 1980s [13], which gained popularity after AlexNet [14]
achieved remarkable performance on ILSVRC-2012 ImageNet
dataset. These CNNs, however, are based on heterogeneous
modules that alternate between convolutional and pooling
layers, followed by FC layers. It was not until [15] that the
concept of a homogeneous network consisting of solely CNN
layers was explored. Inspired by this All-CNN network [15],
in this work, we explore the potential of All-DeBut networks
wherein all layers are substituted by their DeBut counterparts.
While one or a few DeBut layers can be handcrafted, replacing
all layers with their DeBut formats quickly become intractable.
Therefore, the automated chain generation scheme proposed in
this paper is crucial for practical reasons, which largely elimi-
nates the need for labor-intensive design for each DeBut chain.
A major merit of an All-DeBut network arises from its extreme
sparsity and the potential benefits from an implementation
perspective. In this regard, we establish a link between an
all-DeBut layer and a generalized depthwise-separable CNN
layer, followed by a hardware deployment on FPGA to confirm
its hardware friendliness. Our key contributions are:

• Demonstrating the feasibility of All-DeBut networks for
the first time, whose layers are all cast into DeBut chains.

• An automated chain generation scheme that suits most
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CONV and FC layers and significantly reduces the labor
in handcrafting, making possible the design of an All-
DeBut network.

• Further analytical results of DeBut to explain its empir-
ically excellent performance. In particular, we decipher
the relation between a DeBut chain and a non-trivial
depthwise-separable-like convolution.

• FPGA deployment to verify the DeBut’s efficacy on
resource-constrained devices.

II. PRELIMINARY

We use the 4-D tensor K ∈ Rk×k×Ci×Co to denote the
weights of a CONV layer, where k represents the spatial
size of the kernel window, Ci and Co are the numbers
of input and output channels, respectively. The 3-D tensor
X ∈ RHi×Wi×Ci denotes the corresponding input of the
selected layer, where Hi and Wi are the height and width
of the input, and Ci is the number of channels. It is worth
noting that an FC layer can be regarded as a CONV layer
by setting the kernel size equal to the spatial size of the
input. For brevity and without loss of generality, we no longer
specifically distinguish between the CONV and FC layers
in the sequel. We first summarize the important concepts in
DeBut in the form of definitions [12].

Definition 1. (im2col operation) The im2col operation
flattens out the feature map entries in a window followed by
stacking them as columns in a matrix (cf. Fig. 2).

Definition 2. (DeBut matrices) A DeBut matrix comprises
block matrices along its main diagonal, denoted R

(p,q)
(r,s,t) ∈

Rp×q , where (r, s, t) stands for r× s blocks of t× t diagonal
matrices. The subscript and superscript satisfy p

rt =
q
st .

Definition 3. (Monotonic chain) A monotonic DeBut chain
is formed by a series of DeBut factors Rm

(pm,qm)
(rm,sm,tm) × · · · ×

R1
(p1,q1)
(r1,s1,t1)

meeting the constraints:

qi+1 = pi for i = 1, 2, · · · ,m− 1 (1a)

t1 = 1, ti+1 = riti and
pm

rmtm
=

qm
smtm

= 1 (1b)

∀ i = 1, 2, · · · ,m− 1

s.t. pi ≤ qi if pm ≤ q1 , or pi ≥ qi if pm ≥ q1
(1c)

Definition 4. (Bulging chain) A bulging DeBut chain is
formed by a series of DeBut factors Rm

(pm,qm)
(rm,sm,tm) × · · · ×

R1
(p1,q1)
(r1,s1,t1)

meeting the constraints Eqs. (1a) and (1b), plus:

∃ i = 1, 2, · · · ,m− 1 s.t. pi > qi (2)

To avoid the for-loops when doing convolution in the
conventional way depicted in Fig. 2(a), the im2col operation
is applied on both the filters K and the input X , thus resorting
to the more efficient GEMM approach (cf. Fig. 2(b)). We
employ F ∈ RCo×Cik
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and X ∈ RCik
2×HoWo to denote the

flattened filter and input matrices, respectively, where (Ho,
Wo) is the spatial size of the output. By adopting the notation
R

(p,q)
(r,s,t), the product of a sequence of DeBut factors can be

represented efficiently. Based on the properties formulated in
Eqs. (1) and (2), a given sequence of DeBut factors can be

categorized as a monotonic or bulging chain, which will be
used to substitute the flattened filter matrix F with structured
learnable elements. The lower left block in Fig. 2(b) exempli-
fies using a monotonic chain with three DeBut factors to ap-
proximate a given F ∈ R6×27. By replacing a CONV/FC layer
with DeBut, the complexity is reduced from O(cok

2ciHoWo)
to O(maxi∈{1,...,Nfactor} pisiHoWo), where Nfactor is the
number of DeBut factors, and maxi∈{1,...,Nfactor} pisi denotes
the maximum number of nonzeros in a single DeBut factor
within the DeBut chain.

III. ALL-DEBUT NETWORKS

Here an automated DeBut chain generation scheme that fits
most CONV layers is proposed, which eliminates the labor
of handcrafting differently sized DeBut chains. Additionally,
we provide new exposition and analytical explanation of the
benefits brought by the DeBut layers, which largely explain
the empirically remarkable performance of DeBut substitutes
for linear transform in DNNs. Given a CONV layer, it is
impractical to enumerate all possible DeBut chains, while
manually designing chains that meet different requirements is
time-consuming. To overcome this, we propose an automated
chain generation scheme considering typical CONV layer
properties. By observing the structures of popular CNNs
such as AlexNet [14], VGGNet [16], ResNet [17], etc., we
summarize the following properties of common CONV layers:

• Square kernel windows with spatial size k = 1, k = 3,
k = 5, or k = 7 are the most popular.

• The number of input channels Ci and output channels
Co of each layer will not change sharply, and there are
three widely adopted conventions: Co = Ci, Co = 1

2Ci

or Co = 2Ci.
• The numbers of input channels Ci and output channels

Co are typically PoT.
We focus on generating chains automatically for CONV layers
meeting these properties, subject to various compression ratios.
A workaround for arbitrarily sized chains is to use zero
padding to fill up the matrix to meet the conditions.

As introduced in [12], a DeBut chain can be categorized
as a monotonic or a bulging chain. Besides, the chains in
the same category can exhibit different compression ratios
due to different shrinking speeds. To quantify the chain
design requirement and to facilitate coding, we define three
hyperparameters, namely, the shrinking level N ∈ Z+, the
bulging rate α ∈ R (α > 1) needed for bulging chain design,
and a collection of optional shapes of the diagonal blocks
S = {(r, s)|r, s ∈ Z+}. The shrinking level N is related to the
number of DeBut factors. The larger the value of N , the more
DeBut factors and the slower the shrinkage. The bulging rate
can decide the chain’s feature representation capacity which
is proportional to α. Motivated by the limited search space
in Neural Architecture Search (NAS), which improves the
searching efficiency significantly, we use the predefined S to
constrain the shape of the diagonal blocks. Every tuple of (r, s)
in S describes the partition of the diagonal blocks. Since S
contains only a limited number of optional block shapes, it
largely simplifies the complexity of the chain generation.
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Fig. 2. (a) Standard convolution. (b) Flattened filter and input matrices via the im2col operation. A possible DeBut chain for the filter matrix F is given.

A. Automated Chain Generation

Based on the observation and the hyperparameters, we
propose the automated chain generation scheme, which records
the superscripts Ssup and subscripts Ssub of the factors. It
contains three core parts: 1) check the size of kernel tensor
K; 2) make the rule to get Ssup; and 3) use S to determine the
shape of diagonal blocks. Algorithm 1 is the simplified version
of pseudo-code for easier understanding, and the detailed
version and its practical implementation are available in our
GitHub, which has a time complexity of O(n) with n being
the number of DeBut factors. For example, designing a 7-
factor chain for a matrix of size [256, 2304] only takes 1.7ms.
The following is an explanation of the three key components.
In succinct terms, the proposed scheme executes a particular
factorization obeying the rules in Definitions 3 & 4.

Check the size of the kernel tensor K. To instantiate a
reasonable search space for DeBut chain generation, a PoT
constraint is imposed on the numbers of input and output
channels, viz. Ci and Co, of the selected layer. In case of
exceptions, we roundup Ci and Co to their nearest PoT num-
bers via a ceiling function ceil(◦), namely, Ĉi = 2ceil(log

Ci
2 )

and Ĉo = 2ceil(log
Co
2 ).

Formulate the rules to design Ssup. In our scheme, the
determination of the superscripts of the factors when designing
a chain can be divided into four successive stages. For clarity,
we systematically list the four stages and their design rules
in Table I under different conditions. We remark that the
superscripts is related to the kernel size k, and the shrinking
level N is utilized to adjust the number of factors. By adjusting
the value of α, bulging chains with distinct representation
powers can be generated.

Determine the partition of diagonal blocks by S. After
formulating the rules to obtain Ssup (cf. Table I), the relation
between the height and width of each DeBut factor is fixed.
Therefore, we can design a set of optional shapes for the
diagonal blocks. For example, we can set (r, s) for a factor
of shape [2k+log

Ci
2 −j−1, 2k+log

Ci
2 −j ] to be [2, 4], [4, 8], or

[16, 32], etc. Similarly, we can prepare (r, s) for factors in
other stages. In the chain generation, S works as a pool to
provide multiple settings of the diagonal blocks.

Algorithm 1 Automated Chain Generator (Simplified Version)
Input: 4-D kernel tensor K of the selected CONV layer; shrinking level N ;

type of the DeBut chain {′mono′, ′bulging′}; bulging rate α for bulging
chain design; and a collection of optional shapes of the diagonal blocks
S.

Output: The compression ratio η; the superscripts Ssup; and the correspond-
ing subscripts Ssub.

1: Co, Ci, k, k = K.shape ← Get the shape of the kernel.
2: Co = 2ceil(log

Co
2 ), Ci = 2ceil(log

Ci
2 ) ← If the number of output/input

channels is not the PoT, we force it to be the nearest PoT.
3: if type == ’mono’ then
4: Ssup.append([int(2k+log

Ci
2 ), W]), Ssub.append([2k, k2, 1]) ←

Stage 1: Determine the structure of the rightmost DeBut factor.

5: Ssup.append([2
k+log

Ci
2 , 2k+log

Ci
2 ]), Ssub.append([r, s, t]) where

(r, s) ∈ S ← Stage 2: Generate #Factors (determine by N ) with the
same shape, and search (r, s) in the pre-defined S.

6: Ssup.append([2
k+log

Ci
2 , 2k+log

Ci
2 −j−1], Ssub.append([r, s, t])

where (r, s) ∈ S ← Stage 3: Generate the monotonous factors.
7: Ssup.append([int(H), int(2H)]), Ssub.append([r, s, t]) where

(r, s) ∈ S ← Stage 4: Generate the final factor.
8: end if
9: if type == ’bulging’ then

10: Follow the pipeline described above but use the pre-defined stages for
bulging chains in Table I.

11: end if
12: η ← Count the number of nonzeros Nnon and compute the compression

ratio.
13: return η, Ssup, Ssub ← Return the compression ratio and the automat-

ically designed DeBut chain.

B. Connection to Depthwise Separable Convolution

MobileNet [18] and EfficientNet [19] are two favored
lightweight models with impressive performance, wherein
the depthwise separable convolution is celebrated for its
representation capability with much fewer parameters than
standard conv2d convolution. To decode why DeBut can
replace CONV layers with dramatically fewer parameters
while maintaining a decent accuracy, we explore the link of
DeBut to a special, modified form of depthwise separable
convolution which comprises depthwise and pointwise convo-
lutions. Specifically, the conventional convolution is depicted
in Fig. 2(a), every kernel (filter) in the CONV layer will slide
along the spatial axes (viz. H and W axes) of the input,
doing convolution with the corresponding input marked in the
kernel window across the Ci axis. Without loss of generality,
applying column-major im2col operation on the filters and
input, the flattened filter matrix F ∈ RCo×Cik

2

and input
X ∈ RCik

2×HoWo are obtained. The matrix multiplication

https://github.com/jasonli0707/auto_debut_chain_generator
https://github.com/jasonli0707/auto_debut_chain_generator
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TABLE I
FOUR SUCCESSIVE STAGES TO DETERMINE THE SUPERSCRIPTS OF THE FACTORS WHEN DESIGNING CHAINS UNDER DIFFERENT REQUIREMENTS. THE

NUMBER OF FACTORS GENERATED IN EACH STAGE IS PROVIDED, WHERE k IS THE KERNEL SIZE, N IS THE SHRINKING LEVEL, AND α IS THE BULGING
RATE. IT IS WORTH NOTING THAT THE FOUR SUCCESSIVE STAGES DO NOT DETERMINE THE INNER STRUCTURE OF THE FACTORS, NAMELY, (r, s), WHICH

IS DEPENDENT ON THE PRE-DEFINED SEARCHING POOL S.

Type Factor Shape # Factors Stage DescriptionC o = C i C o = C i / 2 C o = 2 C i

Mono.

[2k+log
Ci
2 ,W ] 1 1 1 Stage 1: Initialize the first factor.

[2k+log
Ci
2 , 2k+log

Ci
2 ] max(0, N − 5) max(0, N − 5) max(0, N − 3) Stage 2: N will determine #Factors with the same shape.

[2k+log
Ci
2 −j−1, 2k+log

Ci
2 −j ] 2 (j ∈ [0, 1]) 3 (j ∈ [0, 1, 2]) 1 (j = 0) Stage 3: Generate the monotonous factors.

[H, 2H] 1 1 1 Stage 4: Generate the final factor.

Bulg.

[2k+log
Ci
2 α,W ] & [2k+log

Ci
2 , 2k+log

Ci
2 α] 2 2 2 Stage 1: Initialize the first factor.

[2k+log
Ci
2 , 2k+log

Ci
2 ] max(0, N − 6) max(0, N − 6) max(0, N − 4) Stage 2: N will determine #Factors with the same shape.

[2k+log
Ci
2 −j−1, 2k+log

Ci
2 −j ] 2 (j ∈ [0, 1]) 3 (j ∈ [0, 1, 2]) 1 (j = 0) Stage 3: Generate the bulging factors.

[H, 2H] 1 1 1 Stage 4: Generate the final factor.

Fig. 3. Computation flow along the DeBut chain, connecting the Debut layer to the depthwise separable convolution operations. With a given chain, Step 1
shows how the first row in R1

(18,27)

(2,3,1)
works as a mixer to merge the information in the first channel, and the remaining rows work similarly. By reshaping

the merged information vector obtained by each row respectively, X1 can be regarded as a 3-D tensor X 1. In Step 2, the example illustrates that each row
in R2

(6,18)

(1,3,2)
works as a pointwise convolution while the weights assigned for some slices are zeroed. Likewise, Step 3 further mixes the information, which

allows each pixel in an output channel to contain the information from all pixels in the input feature tensor.

shown in Fig. 2(b) is equivalent to the convolution displayed
in Fig. 2(a). For ease of illustrating the aforementioned convo-
lution operations, a simple DeBut chain with three factors is
exemplified in Fig. 2(b), which is under the assumption k = 3,
Ci = 3, and Co = 6. Fig. 3 visualizes the calculation between
the three-factor chain and the flattened input X .

DeBut vs Depthwise Convolution. The first step shown in
Fig. 3 displays the multiplication between the rightmost DeBut
factor R1

(6,18)
(2,3,1) with X , taking the first row as an example.

It is seen that the nonzero elements in each row can mix the
information selected in every column of X . There are three
cases of the relations between s1 (i.e., the number of nonzeros
in each row of the rightmost DeBut factor) and the size of the
kernel window k: 1) s1 < k2, 2) s1 = k2, and 3) s1 > k2.
In all cases, it is noted that if r > 1, it means more than one
kernel is assigned to mix the elements at the same position.

Case 1 (s1 < k2): Each row of the rightmost factor mixes
part of the pixels in the kernel window when it slides along the
H and W axes of a selected channel, which can be regarded
as a sub-sampling version of depthwise convolution (cf. Step
1 in Fig. 3). Besides, some rows in the DeBut factor have
the chance to merge information from two different channels
when k2 is not an integer multiple of s1. We remark that sub-

sampling the pixels in the kernel window will not degrade the
representation capability of the rightmost DeBut factor, since
all pixels will be sampled due to the complementary positions
of the nonzeros in rows from different diagonal blocks.

Case 2 (s1 = k2): Each row in the rightmost DeBut factor
is identical to depthwise convolution in a fixed channel.
When r > 1, it means more than one kernel is assigned
to a channel, thus the rightmost DeBut factor is expected to
generate intermediate output with richer information.

Case 3 (s1 > k2): It can be treated as a counterpart of
the first case, being an up-sampling depthwise convolution.
Therefore, the rightmost DeBut factor belonging to this case
also warrants informative feature maps as well.

DeBut vs Pointwise Convolution. For better understanding,
we reshape X1 obtained in Step 1 into a 3-D tensor, and
denote it as X 1. Each slice in X 1 is the merged information
obtained by a distinct row in the rightmost DeBut factor. The
second step in Fig. 3 takes the first row in the middle DeBut
factor as an example to show the connection between DeBut
and pointwise convolution. It is seen that the nonzeros in each
row are the weights assigned to the corresponding slices in
X 1, which can be regarded as a masked version pointwise
convolution. Notice that no information will be lost thanks to
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the complementary positions of the nonzeros. The final step
in Fig. 3 can be regarded as a masked pointwise convolution,
which further merges the information based on the reshaped
X2, filling each entry in the final output with information from
every entry in the input tensor. Consequently, given a DeBut
chain with m factors, the multiplication with the flattened
input can be understood as a variant of depthwise convolution
followed by (m − 1) masked pointwise convolution, whose
final output preserves all information from the input tensor.

C. Feature Distance and Compression Flexibility

Here we focus on the distance between the feature maps
obtained by the original CNN and its All-DeBut counterpart,
which demonstrates how DeBut affects the performance of
the compact model and shows the compression strength of
the All-DeBut network. We omit nonlinear operations like
activation, max pooling, and batch normalization for brevity
when formulating the distance. From the im2col view, the
feature map of the original CNN after the forward pass when
given the input X can be described by:

f1(X ) =

(
L∏

l=1

Fl

)
X, (3)

where L is the number of layers of the CNN, Fl the flattened
kernel matrix of layer l, and X the flattened input. For its
All-DeBut correspondence, the final feature map is:

f2(X ) =

 L∏
l=1

ml∏
j=1

Rl
j

(plj ,q
l
j)

(rlj ,s
l
j ,t

l
j)

X, (4)

where ml is the number of factors of the DeBut chain
that substitutes layer l, and Rl

j
(pl

j ,q
l
j)

(rlj ,s
l
j ,t

l
j)

(j = 1, 2, · · · ,ml)

represent the specific factors.
The Kullback-Leibler (KL) divergence is employed to eval-

uate the difference between f1(X ) and f2(X ). The smaller the
distance, the more likely the compressed network will obtain
the same inference results. This KL distance reads:

DKL(f1(X )||f2(X ))

=

(
L∏

l=1

Fl

)
X log

 (
∏L

l=1 Fl)X

(
∏L

l=1

∏ml
j=1 R

l
j

(plj ,q
l
j)

(rlj ,s
l
j ,t

l
j)
)X

 (5)

It is seen that the distance is jointly determined by the
approximation of all substituted layers. It is worth noting that
Alternating Least Squares (ALS) is utilized to minimize the
distance in [12] at the initialization. However, Eq. (5) can be
considered during the training. In this paper, we explore the
use of knowledge distillation as a generic training framework
for All-DeBut networks, with the goal of closing the gap
between the extremely sparse DeBut student and the teacher of
its choice. Specifically, we select Contrastive Representation
Distillation (CRD) [20], which has shown empirically good
results through extensive experiments as compared to other
distillation approaches. According to Eq. (5), by assigning
DeBut chains to different layers relying on their properties
(e.g., position, and kernel size), various All-DeBut networks
meeting different compression requirements can be obtained.

IV. EXPERIMENTS

To demonstrate the feasibility of the homogeneous All-
DeBut network, extensive experiments are conducted with
ModelNet40 [21], CIFAR-100 [22] and ImageNet [23] as
datasets. First, we verify the validity of the automated chain
generation scheme using VGG [16]. Then we employ the pop-
ular PointNet [24] for ModelNet40, and choose ResNet [17]
for CIFAR-100 and ImageNet. Since DeBut is orthogonal to
popular compression approaches like quantization and prun-
ing, we focus on comparing All-DeBut with other homo-
geneous networks obtained by using SVD, Adaptive Fast-
food [9], and Standard Butterfly [10] to substitute the layers.
We emphasize that homogeneous neural networks can be
classified into two categories: 1) adjustable model size, and
2) fixed model size. All-DeBut and All-SVD are examples
of the former class, while All-Butterfly and All-Adaptive
Fastfood belong to the second category. Additionally, FPGA
benchmarking results of DeBut are also provided to confirm
its capability in hardware acceleration.

TABLE II
RESULTS ON CIFAR-100 WITH VGG16-BN, USING AUTO-GENERATED

DEBUT CHAINS OF DIFFERENT SHRINKING LEVELS N . MODEL-WISE
COMPRESSION IS ABBREVIATED AS “MC”.

Model N MC (%) #Params Top-1 Acc. (%) Top-5 Acc. (%)

VGG16-BN – – 14.77M 75.09 92.74
All-DeBut 3 94.40 0.83M 70.27 92.04
All-DeBut 5 94.74 0.78M 68.70 91.45
All-DeBut 7 95.90 0.61M 61.70 88.17

A. Automated Chain Generation

First, we demonstrate the feasibility of the automated chain
generation by applying it to VGG [16], and evaluate its
performance on CIFAR-100 [22] dataset. Table II summarizes
the performance of the All-DeBut networks obtained by dif-
ferent sets of DeBut chains. Here, we fix the chain type to
monotonic and set different shrinking levels N to generate
chains automatically.

According to Table II, it is seen that the larger the shrinking
level N , the higher the compression. By employing the auto-
matically generated chains, the All-DeBut network can achieve
impressive model-wise compression ratios with acceptable
accuracy loss. Subsequently, the automated chain generation
scheme offers us a way to quickly prototype CNNs with DeBut
layers as well as flexibility to vary the model size, which is
an advantage over other fixed-size structured linear transforms
such as Butterfly [10] and Adaptive Fastfood [9].

B. All-DeBut PointNet on ModelNet40

The advancement in 3D sensory devices, such as LIDAR,
has made 3D data increasingly accessible and offered rich
geometric information for robotics, autonomous driving, and
many more. The ModelNet40 dataset is a widely adopted
benchmark for 3D point cloud classification. It comprises of
12311 CAD models separated into 9843 training and 2468
test samples from 40 manufactured object categories. In this
experiment, we employ the popular PointNet as our backbone.
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TABLE III
RESULTS ON MODELNET40 OF HOMOGENEOUS NETWORKS OBTAINED

VIA DIFFERENT LINEAR TRANSFORMS, WITH POINTNET BACKBONE.

Method MC (%) #Params Accuracy (%) Accuracy (%)
Avg. class Overall

PointNet −− 3.47M 86.13 ± 0.46 89.68 ± 0.40
All-SVD 94.80 0.18M 67.27 ± 0.79 76.56 ± 1.28
All-Adaptive Fastfood 98.25 0.06M −− −−
All-Butterfly 93.32 0.23M 82.69 ± 0.42 88.17 ± 0.09
All-DeBut (Small) 95.02 0.17M 81.77 ± 1.78 87.85 ± 0.73
All-DeBut (Large) 93.50 0.23M 82.73 ± 0.73 88.17 ± 0.06

TABLE IV
RESULTS ON CIFAR-100 OF HOMOGENEOUS NETWORKS OBTAINED VIA

DIFFERENT LINEAR TRANSFORMS, WITH RESNET110 BACKBONE.

Method MC (%) #Params Accuracy (%) Accuracy (%)
Top-1 Top-5

ResNet110 −− 1.74M 74.30 ± 0.28 93.16 ± 0.16
All-SVD 88.86 0.19M 35.46 ± 0.04 70.13 ± 0.79
All-Butterfly 91.31 0.15M 67.12 ± 0.21 90.29 ± 0.04
All-DeBut (Small) 91.89 0.14M 68.07 ± 0.27 90.89 ± 0.16
All-DeBut (Large) 76.98 0.40M 71.64 ± 0.17 92.29 ± 0.34

By substituting all layers with different structured linear
transforms, the performance of various homogeneous models
are listed in Table III. Two All-DeBut PointNets of different
sizes are trained. The smaller one achieves an average class
accuracy of 81.77% and overall accuracy of 87.85% while
yielding the second-highest model-wise compression rate with
only approximately 5% parameters of the original model.
Although the All-Butterfly counterpart has slightly higher
accuracy (≤ 1%), it has 35% (0.23M vs 0.17M ) more
parameters. Besides, the standard Butterfly suffers the PoT
and fixed input-output size constraints, resulting in expansion
instead of compression in a few layers (i.e., CONV1 and
input T-Net FC3). To maintain fairness, those layers are kept
unchanged in our All-Butterfly implementation. To obtain a
hardware-friendly homogeneous network, the implementation
of standard Butterfly on some layers can lead to an increase
in the number of parameters, whereas All-DeBut solution
guarantees compression in every layer.

By replacing the largest two layers of the smaller one with
another set of DeBut chains, a bigger All-DeBut PointNet
with a similar compression (93.50% vs 93.32%) as the All-
Butterfly variant is built, which outperforms the All-Butterfly
counterpart in average class accuracy (82.73% vs 82.69%) and
ties in overall accuracy. Even though All-Adaptive Fastfood
achieves the highest compression ratio of 98.25%, it is prac-
tically infeasible to train as the Fast Hadamard Transform is
overly time-consuming. In our case, it takes approximately
1200s to train only a single epoch on ModelNet40.

C. All-DeBut ResNet on CIFAR-100 and ImageNet

Having demonstrated the feasibility of All-DeBut on point
cloud classification, we proceed to the CIFAR-100 dataset
comprising 100 classes, each with 500 training and 100 testing
images. We use ResNet110 as the backbone. The results are
in Table IV. It can be observed that All-DeBut ResNet110
outperforms All-Butterfly ResNet in both top-1 (68.07% vs
67.12%) and top-5 (90.89% vs 90.29%) accuracies at the

TABLE V
RESULTS ON IMAGENET. RESNET34 IS USED AS THE BACKBONE.

Method MC (%) #Params (M) Top-1 Acc (%) Top-5 Acc (%)

All-Debut 71.89 6.13 66.50 86.76
Tucker-2 71.28 6.26 62.19 84.26

TABLE VI
FPGA PERFORMANCE COMPARISON USING VGG16 AS BACKBONE.

W #A# DENOTES THE WEIGHT AND ACTIVATION BITWIDTHS.

Method Latency (ms) Bitwidth

Baseline (conv2d) 23.39 W8A8
All-DeBut 13.62 W16A16

same compression ratio (91.89% vs 91.31%). ResNet with
SVD replacement achieves a comparable model-wise com-
pression but with much lower top-1 and top-5 accuracies of
35.46% and 70.13%, respectively. Besides, All-DeBut ResNet
demonstrates the flexibility of DeBut layers, in which one can
increase the number of parameters by adapting different chains
without giving up the homogeneity of All-DeBut networks.
By allowing the model to hold more parameters (0.40M
vs 0.14M ) using a different set of chains, the All-DeBut
ResNet can recover the top-1 accuracy to within 3% and top-5
accuracy to even within 1% versus the baseline.

An additional ImageNet experiment is conducted to demon-
strate All-DeBut effectiveness on large-scale datasets. Specif-
ically, we compared All-DeBut with the sophisticated Tucker-
2 decomposition algorithm using a ResNet34 Backbone. The
results, shown in Table V, indicate that under a similar com-
pression ratio of ∼ 70%, the All-DeBut network outperforms
the Tucker-2 counterpart by an absolute gain of > 4% in terms
of Top-1 accuracy, making All-DeBut a viable choice for CNN
compression.

D. DeBut Simulation on FPGA

To show the superiority of All-DeBut nets in hardware
speedup, we simulate an All-DeBut VGG-16 on a Xilinx
Ultra96-V2 FPGA using Vivado 2020.2 for High-Level Syn-
thesis (HLS). Table VI compares our DeBut accelerator to
baseline (conv2d), running on the same hardware. The effi-
ciency of DeBut stems from its structured sparsity, combined
with a modular configurable network topology that can be
scaled up or down subject to the desired accuracy. DeBut
layers have emerged as a promising scheme to achieve ≈ 2×
speedup with much fewer parameters and operations over the
traditional conv2d layers.

V. CONCLUSION

This paper has performed an in-depth study on the lately
proposed Deformable Butterfly (DeBut) structured sparse ma-
trix factorization. A newly devised automated DeBut chain
generator largely obviates the labor in handcrafting DeBut
chains and plays a crucial role in enabling the substitution of
every CNN or FC layer, for the first time, in a DNN to achieve
a remarkable compression without much sacrifice in accuracy.
Moreover, an intimate link is revealed between DeBut and
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a special form of depthwise separable convolution, thus ex-
plaining the effectiveness of DeBut. Experiments demonstrate
the superiority of an All-DeBut network, added with FPGA
benchmarking that showcases its hardware speedup and its
promising candidacy for resource-limited edge deployment.
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