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Abstract

Deep neural networks are incredibly vulnerable to crafted,
human-imperceptible adversarial perturbations. Although ad-
versarial training (AT) has proven to be an effective defense
approach, we find that the AT-trained models heavily rely
on the input low-frequency content for judgment, account-
ing for the low standard accuracy. To close the large gap be-
tween the standard and robust accuracies during AT, we in-
vestigate the frequency difference between clean and adver-
sarial inputs, and propose a frequency regularization (FR) to
align the output difference in the spectral domain. Besides,
we find Stochastic Weight Averaging (SWA) (Izmailov et al.
2018), by smoothing the kernels over epochs', further im-
proves the robustness. Among various defense schemes, our
method achieves the strongest robustness against attacks by
PGD-20, C&W and Autoattack, on a WideResNet trained on
CIFAR-10 without any extra data.

Introduction

Deep neural networks (DNN5s) have exhibited strong capa-
bilities in various applications (He et al. 2016; Bin et al.
2019; Tao et al. 2020). However, research in adversarial
learning shows that even well-trained DNNs are highly vul-
nerable to carefully crafted, human-imperceptible pertur-
bations (Goodfellow, Shlens, and Szegedy 2014; Szegedy
et al. 2013). Recently, various defense methods (Zhang et al.
2019; Wang et al. 2019; Wu, Xia, and Wang 2020) have
been proposed to improve the robustness. Adversarial train-
ing (AT) (Madry et al. 2017), as a min-max saddle point
problem, proves to be an effective and promising defense
method without obfuscated gradients problems (Athalye,
Carlini, and Wagner 2018). In the following, we denote the
models obtained by natural training and AT as natural and
robust models, respectively. For robust models, the accuracy
achieved on natural and adversarial inputs are denoted as
standard accuracy and robust accuracy, respectively. While
AT improves robust accuracies, it generally sacrifices stan-
dard accuracies. Besides, frequency analysis (Wang et al.
2020) has been explored to yield new insights into DNNSs. In
this work, we aim to answer the following questions using a
frequency lens: 1) Why does AT reduce standard accuracy?

!The final weight for evaluation is the average of the weights of
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and 2) how to improve the robustness by narrowing the gap
between the standard and robust accuracies?

To this end, we apply low-pass filtering (LPF) to the natu-
ral and adversarial inputs. Empirical results demonstrate that
the robust model mainly relies on low-frequency content for
prediction, which accounts for the low standard accuracy as
high-frequency information is ignored. We also discover that
the white-box attack can adapt its aggressive frequency dis-
tribution to the target model’s frequency bias, thus explain-
ing why white-box attacks are hard to defend. By visualizing
the differences between the natural and adversarial inputs,
we reveal that the differences are mainly concentrated in the
low-frequency region. In order to close the accuracy gap,
we propose a frequency regularization (FR) that aligns the
outputs for natural and adversarial inputs in the frequency
domain, leading to improvement in the robust accuracy. In
addition, by observing that the robust model has a smoother
kernel than its natural counterpart, we employ Stochastic
Weight Averaging (SWA) (Izmailov et al. 2018) as a method
of smoothing kernels over the training steps to further im-
prove robustness.

To summarize, our work novelly adopts a frequency lens
to: 1) explain the low standard accuracy of the robust model,
and 2) propose a frequency-based regularization to signifi-
cantly improve the robust accuracy.

Related works

Adversarial Defense. Among various defense methods
that have been proposed to improve robustness (Szegedy
et al. 2013; Madry et al. 2017), AT (Athalye, Carlini, and
Wagner 2018) constitutes an effective and promising means.
Typically, AT feeds adversarial inputs into a DNN to solve
the following min-max optimization problem:
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where n is the number of training examples, x; is the adver-
sarial input within the e-ball (bounded by an L,-norm) cen-
tered at the natural input x;, fy is the DNN with weight 6,
L(+) is the classification loss, e.g., cross-entropy (CE). Some
recent results inspired by AT are also in place to further raise
the robust accuracy: Zhang et al. (Zhang et al. 2019) iden-
tify a tradeoff between standard and robust accuracies that



Table 1: Top-1 accuracy(%) of natural and robust ResNet18
models trained on CIFAR-10. The LPF row denotes the filter
bandwidths applied to the inputs. The higher the value, the
more information is retained (i.e. 32 means no filtering).

model LPF | 32 28 24 20 16

94.56 92.92 90.75 80.7 50.72

Natural Clean
T
awra 00 217 23.15 3925 32.15

PGD-20

80.55 80.50 80.17 79.27 77.4
51.81 52.10 52.22 52.54 52.52

Clean
Robust
PGD-20

serves as a guiding principle for designing the defenses. Wu
et al. (Wu, Xia, and Wang 2020) identify that the weight
loss landscape is closely related to the robust generalization
gap and propose an effective Adversarial Weight Perturba-
tion (AWP) method to overcome the robust overfitting prob-
lems (Rice, Wong, and Kolter 2020).

Learning in the Frequency Domain. Frequency analy-
sis provides a new perspective on the generalization behav-
ior of DNNs. In (Rippel, Snoek, and Adams 2015), spec-
tral pooling is designed to preserve more information than
regular spatial-domain pooling. Tao et al. (Tao et al. 2022)
propose a frequency-aware plug-in to remove redundant in-
formation effectively for quantization. Wang et al. (Wang
et al. 2020) claim CNNs could capture human-imperceptible
high-frequency components of images for prediction, and
smooth convolutional kernels are beneficial for robustness.

Analysis

Reason for Low Standard Accuracy. To explore the im-
portance of high- and low-frequency information for mod-
els, we apply different LPFs to the natural and adversarial
inputs that are fed into the natural or robust models to calcu-
late the corresponding standard and robust accuracies. The
results are shown in Table 1, e.g., a LPF bandwidth of 16
means after a Fast Fourier Transform (FFT), only the 16 x 16
patch in the center (viz. low frequencies) is preserved, and
all external values are zeroed. As the bandwidth of LPF
decreases, the information retained in the images also de-
creases. For the robust model, even though a large amount
of high-frequency information is removed, there is only a
negligible reduction in standard accuracy and less than a 1%
improvement in robust accuracy. This indicates that the ro-
bust model focuses primarily on low-frequency content for
predictions, and the adversarial inputs rely on low-frequency
components to exercise its aggressiveness. Furthermore, the
standard accuracy of the robust model (=80%) is similar to
that of the natural model fed with natural inputs at LPF 20
(80.7%). Such observation indicates that the low standard
accuracy in the robust model is due to the under-utilization
of high-frequency components.

White-box Attack. In the natural model, as high-
frequency information is removed, standard accuracy drops
sharply. This suggests that the natural model employs high-
frequency information to make classification judgment,
which is consistent with the findings of (Wang et al. 2020).
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Figure 1: Visualization of first convolutional kernels (16 ker-
nels each channel x 3 channels) of a natural (top) and robust
(bottom) model. The latter has smoother kernels than the for-
mer.

Moreover, the accuracy subject to adversarial inputs is im-
proved at lower LPF bandwidths, reflecting that the adver-
sarial inputs of the natural model exhibit aggressiveness in
both the high- and low-frequency regions.

For robust models that focus on the low-frequency in-
formation, the aggressiveness of the adversarial inputs is
mainly concentrated in the low-frequency region. Whereas
for natural models that utilize both high- and low-frequency
information, the hostility is embedded in both high- and low-
frequency regions. This suggests that the white-box attack
can adapt its aggressive frequency distribution to the target
model’s frequency bias, thereby explaining why white-box
attacks are so hard to defend.

Smooth Kernels. Wang et al. (Wang et al. 2020) intro-
duce the concept of “smooth” kernel which has a smooth
envelope on its spatial weights. If a kernel is smooth, it will
see a reduced amount of high-frequency information. Along
this line, it is articulated that smoothing the kernels’ adja-
cent spatial values can help improve the adversarial robust-
ness. Since the kernels of the first layer deal directly with the
images, they can respond to the frequency bias of the infor-
mation extracted from the images. In Figure 1, we visualize
16 randomly selected 3-channel kernels from the first layer
of a natural (upper) and a robust model (lower), wherein the
spatial size of each kernel is 3 x 3. The figure shows that the
adjacent weights of kernels in the robust model change less
dramatically, producing smoother kernels than the natural
model counterparts. This implies that the robust model pays
more attention to the low-frequency information, consistent
with our previous discussion.

On the other hand, SWA (Izmailov et al. 2018), which av-
erages the values of weights over time (epochs) along the
natural training trajectory, proves to be an effective method
to improve the generalization of the models. Here, we uti-
lize SWA in AT as a method of smoothing kernels in the
training time-axis dimension to mitigate the robust overfit-
ting problems (Chen et al. 2020). Ablation study is shown
in experiments to confirm the benefits of SWA in terms of
robustness.
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Figure 2: Visualization of natural and adversarial inputs in
the spatial (left) and frequency domains (middle), and the
absolute difference (right) after normalization in the fre-
quency domain, with low frequency in the center and high
frequency around. The brighter the pixel, the higher the fre-
quency amplitude. The differences are mainly concentrated
in the low-frequency region.

Frequency Regularization

To narrow the gap between standard and robust accuracies
of the robust model, we need to identify the differences
between natural and adversarial inputs. Figure 2 illustrates
the natural and adversarial inputs in the spatial and spec-
tral domains based on an adversarially trained model on
the CIFAR-10 dataset. Because the adversarial inputs need
to satisfy the /o, norm constraints, the changes in the spa-
tial domain are rather small, and one can still recognize
the horse and the ship before and after the perturbation.
In the frequency domain, as shown in Figure 2, the differ-
ences between the natural and adversarial inputs are mainly
distributed in the low-frequency region, with smaller am-
plitudes in the high-frequency region. Combined with the
previous findings that robust models rely primarily on low-
frequency information for prediction, it is easy to understand
that the differences in the low-frequency region lead to a
large accuracy gap. This further validates that, for the ro-
bust model, adversarial inputs rely mainly on low-frequency
information to execute their aggressiveness.

Inspired by these findings, we propose that if a model can
be trained to limit such frequency differences and achieve
similar spectral domain outputs, then robust accuracy can be
improved by approaching standard accuracy. To do so, we
devise a simple yet effective frequency regularization (FR)
to align the outputs for natural and adversarial inputs in the
frequency domain. The optimization goal of the proposed
AT with FR is:

Lar = Lop+A- % > Dis(F(f (@), FU), @)

where Lo denotes the cross-entropy loss, A (defaulted at
0.1) denotes the FR coefficient, Dis denotes the distance
function (£ is used), and F denotes the Discrete Fourier
Transform (DFT). The distance function is applied to the
real and imaginary parts of the complex numbers after the
DFT, respectively, and the results are summed. With FR, the
robust accuracy against the PGD-20 attack on CIFAR-10 is
substantially improved from 55.01% to 59.49%.
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Figure 3: Left: Standard accuracy (dashed line) and ro-
bust accuracy (solid line) on validation and test sets over
epochs for AT-trained WideResNet-34-10 on CIFAR-10. FR
denotes frequency regularization, SA and RA denote the
standard and robust accuracies; Right: Ablation studies to
demonstrate the effect of FR and SWA on model perfor-
mance.

Experiments

Experimental Settings. We take WideResNet-34-10 as a
default model and adopt an SGD optimizer with a momen-
tum of 0.9 and a global weight decay of 5 x 10~*. The
model is trained for 100 epochs with a batch size of 128
on one 3090 GPU. The initial learning rate is 0.1, decays
to one-tenth at 75th and 90th epochs, respectively. All ex-
periments are performed on the CIFAR-10 dataset, which
contains 50k training (randomly split into a training set and
a validation set at a 9:1 ratio) and 10k test examples. No ex-
tra data are used. We use PGD-10 AT as a standard training
method. The robust accuracy of the PGD-20 attack equipped
with random-start is taken as the main basis for robustness
analysis. The attack step size is o = 2/255 and maximum [,
norm-bounded perturbation € = 8/255. SWA is used since
the first epoch where the learning rate drops and continues
until the end with a cycle length 1.

Experimental Results. We evaluate the robust accu-
racy against several popular attack methods, includ-
ing FGSM (Goodfellow, Shlens, and Szegedy 2014),
PGD (Madry et al. 2017), C&W (Carlini and Wagner 2017)
and AA (Croce and Hein 2020), shown in Table 2. Following
the default setting of AT, the attack step size is 2/255, and the
maximum [, bounded perturbation is 8/255. The standard
and robust accuracies are used as the evaluation metrics.

As shown in Figure 3, our method succeeds in closing the
gap from 29.61% to 20.97% with a 5.11% improvement in
robust accuracy against PGD-20 and a 3.53% drop in stan-
dard accuracy. This matches the generally accepted theory
that there is a trade-off between standard and robust ac-
curacies. The ablation experiments show that FR (59.49%)
plays a major role in improving robust accuracy, while SWA
(55.18%) is utilized here to alleviate the overfitting problem.
The scheme that combines both of them achieves the best
60.12% and 54.35% robust accuracy against PGD-20 attack
and Autoattack, respectively.



Table 2: Top-1 robust accuracy(%) of the WideResNet-34-
10 model on the CIFAR-10. Bold numbers indicate the best.

Method ‘ Clean FGSM PGD-20 C&W AA

PGD-AT (Rice, Wong, and Kolter 2020) | 84.62 60.17  55.01 53.32 51.42
TRADES (Zhang et al. 2019) 84.65 61.32 5633 54.20 53.08
MART (Wang et al. 2019) 84.17 61.61 58.56  54.58 51.10
AWP (Wu, Xia, and Wang 2020) 85.57 6290 58.14 5596 54.04
AT-SWA 86.17 61.20 55.18 54.57 5225
AT-FR(ours) 80.59 6147 5949 54.33 52.06
AT-FR-SWA (ours) 81.09 6249 60.12 56.14 54.35

Conclusion

This work reveals that an adversarially trained model fo-
cuses primarily on low-frequency content for predictions,
which accounts for the low standard accuracy due to under-
utilization of high-frequency information. To this end, we
devise a frequency regularization to align the logits for nat-
ural and adversarial inputs in the spectral domain. SWA
is adopted temporally to smooth the weights, improving
the robustness further. Experiments show that the proposed
method can substantially improve the robust accuracy. We
further find that the white-box attack can adapt its aggres-
sive frequency distribution to the target model’s frequency
bias, which explains why white-box attacks are hard to de-
fend. It is believed these findings can shed light on the design
of robust DNNs.
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